ZNOTES // A-LEVEL SERIES visit www.znotes.org

Updated to 2019-21 Syllabus

CIE AS-LEVEL CHEMISTRY 9701

SUMMARIZED NOTES ON THE SYLLABUS

TABLE OF CONTENTS

CHAPTER 1 Atoms, Molecules & Stoichiometry CHAPTER 2 Atomic Structure CHAPTER 3 Chemical Bonding **CHAPTER 4** States of Matter CHAPTER 5 **Chemical Energetics** CHAPTER 6 Electrochemistry CHAPTER 7 Equilibria CHAPTER 8 Reaction Kinetics CHAPTER 9 Chemical Periodicity

6 Group II – Alkaline Earth Metals

CHAPTER 11 Group 17 – Halogens

18 CHAPTER 12 Nitrogen & Sulphur

CHAPTER 13 Introduction to Organic Chemistry

- CHAPTER 14 Hydrocarbons
- CHAPTER 15Halogen Derivatives
- 26 CHAPTER 16 Hydroxy Compounds
 - CHAPTER 17 Carbonyl Compounds

CHAPTER 18 Carboxylic Acids & Derivatives

CHAPTER 19 Analytical Techniques

1. ATOMS, MOLECULES AND STOICHIOMETRY

1.1 Relative Mass

Relative	Atomic mass (A _r):	weighted average mass of an atom	compared	
	Molecular mass (M _r):	mass of a molecule	where one atom of ¹² C	
	Formula	mass of one formula	has mass of	
	lisotonic	mass of a particular	_ exactly 12	
	mass:	isotope of an element	units	

1.2 The Mole

- **Mole:** amount of substance that has the same number of particles (atoms, ions, molecules or electrons) as there are atoms in exactly 12g of the carbon-12 isotope.
- Avogadro's constant: number of atoms, ions, molecules or electrons in a mole = 6.02×10^{23}

1.3 Mass Spectra

Abundance of isotopes can be represented on a mass spectra diagram

 $Relative Abundance = \frac{Peak \ Height}{Total \ Height} \times 100\%_{30}$ $A_r = \sum \frac{Mass \ \times \ Relative \ Abundance}{100}_{10}$

1.4 Empirical and Molecular Formulae

- Empirical formula: gives simplest ratio of different atoms present in a molecule
- Molecular formula: gives actual numbers of each type of atom in a molecule
- Molecular formula can be calculated using the **Mr** of a compound and its empirical formula

 $Molecular \ Formula = (Empirical \ Formula)_n$ $Where \ n = \frac{Molecular \ Mass}{Mass \ of \ Empirical \ Formula}$ % Composition = $\frac{Atomic \ Mass \ of \ Moles}{Molar \ Mass \ of \ Compound} \times 100\%$

1.5 Calculations involving Mole Concept

 $Moles = \frac{Mass}{Molar Mass}$ $Volume of a Gas = Moles \times 24$

- Formula applies to gases at r.t.p.
- Unit of volume is dm^3 and $1000cm^3 = 1dm^3$

 $Concentration = \frac{Moles}{Volume}$

• Concentration unit = $mol \ dm^{-3}$

2. ATOMIC STRUCTURE

2.1 Subatomic Particle

Subatomic Particle	Relative Charge	Relative mass/ a.m.u	
Protons (P)	+1	1	
Neutrons (n)	0	1	
Electrons (e ⁻)	-1	1/1840	

2.2 Behavior of a Beam of Subatomic Particles

+ Blectrons Protons SOURCE

- Protons: positively charged ∴ deflected to -ve pole
- Neutrons: no charge \therefore not deflected
- Electrons: negatively charged \therefore deflected to +ve pole
- e⁻ lighter than P⁺ .. deflected at greater angle

2.3 Protons, neutrons and electrons

- Mass concentrated within centre; nucleus
- An atom is electrically neutral; P⁺ = e⁻
- Atomic no. or proton no. (Z) = no. of protons
- Atomic mass or nucleon no. (A) = no. of P + N

Nucleon number $\rightarrow 11$ Proton number $\rightarrow 5$ B

- Isoelectronic ions: ions having same no. of e's
- **Isotopes:** are atoms of the same element with the same proton number but different number of neutrons

2.4 Electronic Configuration

- Electrons are arranged in energy levels called shells
- Each shell is described by a principle quantum no. (P.Q)
- As the P.Q. increases, energy of shell increases
- Inside the shell there are subshells: *s*, *p*, *d* and *f*
- Orbital: region in space where there is a maximum probability of finding an electron

• Each orbital can hold 2e⁻s in opposite directions

- When e⁻s are placed in a set of orbital of equal energy, they occupy them singly and then pairing takes place
- e⁻s placed in opposite direction: both -vely charge & if placed in same direction, they'd repel. In opposite direction they create a spin to reduce repulsion
- Completely filled or half filled (i.e. one e⁻ in each orbital) are more stable (reduced repulsion)

2.5 Subshells

	S	p	d	f
Orbitals	1	3	5	7
Max e ⁻ s	2	6	10	14

15 25 2p

3s 3p 3d

4s 4p 4d 4f

5s 5p 5d 5f ...

- Aufbau's principle: method of showing how atomic orbitals are filled in a definite order to give lowest energy arrangement possible
- Energy difference between 4s & 3dvery small \therefore an e⁻ from 4s can be promoted to half-fill or full-fill 3d orbital, to make atom more stable
- When filling, fill 4s before 3d and when removing, also remove first from 4s

2.6 Shapes of Subshells

s-Subshell	<i>p</i> -Subshell		
y z x	p_x Orbital p_y Orbital p_z Orbital		
 Spherical shape 			
 Increases in size as P.Q 	Dumbbell shape		
no. increases			

2.7 Ionization Energies (I.E)

- 1st I.E: energy needed to remove 1 mole of e⁻s from 1 mole of gaseous atom to form 1 mole of unipositive ions
- Each successive I.E is higher than previous one because as e⁻s are mol⁻¹ removed, protons > e s 🖉 energy // 4 attraction between onisation protons and remaining Big jump occurs electrons increases 3 log₁₀ between I.E 1 & 2 Successive I.Es have \therefore part of 1st gp large jump in their value 2 + 0 when e⁻s removed from 3 4 5 6 7 8 9 10 11 1 2 lower energy shell Number of electrons removed
 - Deduce group no. by checking when 1st big jump occurs

2.8 Factors affecting Ionization Energy

Nuclear Charge	 +ve charge due to protons in nucleus Greater nuclear charge → greater ionization energy
Shielding Effect	 Inner shells of e⁻s repel outermost e⁻s, thus shielding them from +ve nucleus. The more e⁻ shells, the greater is the shielding effect Greater effect → lower I.E because lesser attractive force between nucleus & outer e⁻s
Atomic Radius	 Distance from the centre of the nucleus to the outermost orbit Greater radius → lower I.E; distance of outermost e⁻ to nucleus is large ∴ less energy needed to remove e⁻
Stable Config.	 High I.E needed to remove e^{-s} from completely or half-filled orbitals

2.9 General 1st I.E Trends

First Ionization Energy Trends					
Down a Group	Across a Period				
<u>DECREASES</u>	<u>INCREASES</u>				
 New shells added 	 Shell no. remains same 				
• Attraction of nucleus to	 Proton no. increases 				
valence e ⁻ s decreases	• Effective nuclear charge				
 Shielding effect 	increases				
increases	 Atomic radius decreases 				

2.10 Trend in 1st I.E across 3rd Period

- I.E of Al lower than Mg: e⁻ removed in Al is from higher energy 3p orbital which is further away from nucleus than 3s e⁻ being removed from Mg. Nuclear attraction is less for 3p than 3s ∴ I.E of Al is lower than Mg
- I.E of S lower than P: e⁻ being removed in P is in a half filled, more stable 3p orbital whereas in S, the pairing of electrons in 3p results in increased repulsion ∴ less energy need to remove an e⁻

2.11 Ionic Radius

- Ionic radius: describes the size of an ion
- **Positive ion:** smaller radius than original neutral atom because shell no. decreases, screening effect decreases but the attraction of nucleus increases.

Radius

lonic

 Negative ion: larger ionic radius than neutral atom because e^{-s}

Elements Across Period

•Na⁺

added while nuclear charge remains same

Groups	1 to 3	5 to 7
lon	Positive	Negative
No. of shells	n-1	n

Proton no. and effective nuclear charge increases
Ionic radius decreases

• Negative ions always larger than positive ions in the same period as they have one more shell

3. CHEMICAL BONDING

<u> 3.1 Ionic (Electrovalent) Bonding</u>

- Ionic bond is the electrostatic attraction between oppositely charged ions.
- Structure: giant ionic lattice, crystalline solids
- Have high melting and boiling points

• **Coordination number:** number of oppositely charged ions that surround a particular ion in an ionic solid

<u>3.2 Covalent Bonding</u>

- Covalent bond is the bond formed by the sharing of pairs of electrons between two atoms.
- Bonding electrons: e⁻s involved in bond formation
- Non-bonding electrons or lone pair: pair of valence e⁻s that are not involved in bond formation
- Covalent compounds are made of molecules which are held together by weak intermolecular forces
- They have low melting and boiling points

<u>3.3 Coordinate/Dative Bonding</u>

- Coordinate bond is a covalent bond where both electrons in the bond come from the same atom
- Conditions:
- \circ An atom should have a lone pair of electrons
- \circ An atom should be in need of a pair of electrons
- Donor: the atom that supplies the pair of electrons
- Acceptor: the atom that accepts the pair of electrons
- Coordinate bond is represented by an "→" drawn from the atom donating to towards the atom accepting
- Formation of Ammonium ion (*NH*⁺₄):

• Formation of *AlCl*₃ dimer (*Al*₂*Cl*₆):

- \circ Above 750°C, exists as vapor & covalent molecule AlCl₃
- \circ As vapor cools, exists as dimer Al_2Cl_6
- Bond angle as AlCl₃ = 120°
- \circ Bond angle as Al₂Cl₆ = 109.5°

<u>3.4 Orbital Overlap</u>

• For a covalent bond to form, atomic orbitals containing unpaired valence electrons must overlap each other

- Sigma bond has greater overlap $\therefore \sigma > \pi$
- Pi bond cannot exist without a Sigma bond.

3.5 Shapes of Covalent Molecules

- Shape and bond angles of molecules depend on:
- o The number of pairs of electrons around central atom • Whether these pairs are lone pairs or bonded pairs
- Valence shell electrons are arranged in pairs to minimize repulsion between themselves
- Order of repulsion strength (VSEPR Theory):

Lone -L	one 🔰 Lone -	Bonded	Bonded - Bonded				
Туре	pe Shape		Example				
2 Pairs of e s							
2 bonded	Linear	180 ⁰					
	3 Pairs	s of e ⁻ s					
3 bonded	Trigonal Planar	120 ⁰	BF3				
	4 Pairs	s of e ⁻ s					
			\mathbf{P}				
4 bonded	Tetrahedral	109.5 ⁰	CH₄				
3 bonded 1 lone	Pyramidal	107 ⁰	NH ₃				
2 bonded 2 lone Angular		104.5 ⁰	H ₂ O				
	5 Pairs	s of e ⁻ s					
5 bonded	Trigonal Bipyramid	90 ⁰	PFs				
	6 Pair	of e ⁻ s					
6 bonded	Octahedral	90 ⁰	SF ₆				

3.6 Hydrogen Bonding

- Strongest type of intermolecular force in covalent bonds
- For hydrogen bonding to occur, we need:
- Molecule having a H atom bonded to F, O or N • Molecule having F, O or N atom with lone pair of es

3.7 Electronegativity

- Electronegativity depends on:
- \circ Radius of atom **inversely** \propto electronegativity
- \circ Nuclear attraction **directly** \propto electronegativity
- Electronegativity increases across a period because atomic radius \downarrow and nuclear attraction \uparrow
- Electronegativity decreases down a group because atomic radius \uparrow and nuclear attraction \downarrow
- Dipole moment: slight charges on atoms in a covalent bond due to differences in electronegativity

Dipole Moment has a Magnitude and a Direction

3.8 Bonds

- Bond energy: energy needed to break one mole of a given bond in one mole of gaseous molecules
- Bond length: distance between the centers of two nuclei of two adjacent atoms
- Double bonds are shorter than single bonds because double bonds have a greater negative charge density between the two atomic nuclei hence greater attraction
- Bond length depends on radii of the two bonded atoms; larger the radius, longer the bond length
- Strength of the bond depends on the length of the bond
- Longer bond Weaker bond More reactive

3.9 Polar and Non-Polar

Polar Covalent Bonds

- Bonds with slight ionic character
- Bond formed with atoms of different electronegativity
- Bonding e's attracted more towards atom with greater electronegativity : unequal sharing of electrons : molecule develops slight charges = Polar Molecule
- Polar molecules have dipoles; electric charges of equal magnitude and opposite sign
- The greater the difference in electronegativity of the two bonded atoms, the greater is the ionic character

Non-Polar Covalent Bonds

- Bond formed between:
- o Identical atoms: the electronegativity of both atoms is the same so pair of electron shared equally
- Symmetrical polyatomic molecules: dipoles of bond exert equal & opposite effects hence cancel charge
- Non-polar molecules have no overall charge

...

3.10 Intermolecular Forces

• Intermolecular forces: weak forces present between two covalent molecules

Induced Dipole (Van Der Waals' Forces)

- Very weak forces present between **non-polar molecules**
- Due to constant motion of e⁻s, at an instant, a non-polar molecule develops poles due to distortion of electron density giving rise to instantaneous dipole, which is able to induce a dipole in the adjacent molecules
- Van der Waals forces increase with:
- increasing number of contact points between molecules; point where molecules come close together
 increasing number of electrons (+ protons) in molecule

Permanent Dipole-Dipole Forces

- Weak forces present between polar molecules
- Molecules always attracted to charged rod, whether +ve or –ve because molecules have +ve and –ve charges

<u>3.11 Metallic Bonding</u>

- Strong electrostatic forces of attraction between metal cations and delocalized mobile electrons
- Structure: lattice of +ve ions surrounded by mobile es
- Strength of metallic bond increases with: o Increasing positive charge on the ions in the lattice
- Decreasing **size of metal ions** in the lattice
- Increasing number of mobile e⁻s per atom

3.12 Summary

	Metal + Non-Metal	Metals Only	Non-Metals On		ily
			Covalent		
Bonding	lonic	Metallic	Molecular		Ma ana na ala sula
			Polar	Non-Polar	Macromolecule
Structure	Giant ionic lattice	Giant metallic lattice	Molecular	Molecular Structure	
Particles Present	+ve and -ve ions	+ve ions and -ve electrons	Molecular		Atoms
Forces	Forces Electrostatic		Weak intermolecular and Strong intramolecular		Strong covalent
M.P. / B.P.	Н	igh	Lo	W	Highest
Solubility in Water	Yes	No	No except hydrogen-bonded		No
Physical State at R.T.P	Solid	(hard)	Soft solid, liquid or gas		Very Hard Solid
Electrical Conductivity	Molten/ aqueous	Good	No		No except graphite

4. STATES OF MATTER

4.1 Basic Assumptions of Kinetic Theory

- Ideal gas: a gas whose volume varies in proportion to temperature and in inverse proportion to pressure.
- Noble gases such as helium and neon approach ideal behavior because of their low intermolecular forces.

Ideal Gas Laws:

- Gas molecules move rapidly and randomly
- Distance between gas molecules is greater than diameter of molecules ∴ volume is negligible
- No forces of attraction/repulsion between molecules
- All collisions between particles are elastic E_K conserved
- Temperature of gas related to average E_K of molecules
- Conditions at which gases behave ideally:
- High temperature
- Low pressure

Limitations of Ideal Gas Laws:

- Real gases do not obey kinetic theory in two ways:
- oThere is **not** zero attraction between molecules
- $\circ \mathsf{We}\ \textbf{cannot}\ ignore\ volume\ of\ molecules\ themselves$

Deviations visible at low temp. and high pressure

- Molecules are close to each other
- Volume of molecules not negligible relative to container
- VDW forces present, pulling molecules to each other
- Pressure is lower than expected from ideal gas
- Effective volume is less than expected from ideal gas

4.2 General Gas Equations

Quantity	Unit	Conversion
Pressure Pascal		1KPa = 1000Pa
Volume	m³	$1m^3 = 1000dm^3 = 1 \times 10^6 \text{cm}^3$
Temperature	°К	^o C + 273

• Standard Conditions: 101KPa and 273°K

 $Mole Fraction = \frac{Mols of One Gas}{Total Mols of Gases}$

Partial Pressure of a Gas = *Mole Fraction* × *Total Pressure*

4.3 Liquid State

- Particles touching but may have gaps
- Have E_K to slide past each other in random motion
- Enthalpy of fusion: heat energy required to change 1 mole of solid into a liquid at its melting point

• Heating a solid (melting):

- Energy transferred makes solid particles vibrate faster
 Forces of attraction weaken & solid changes to liquid
- Enthalpy of vaporization: heat energy required to change 1 mole of liquid into a gas at its boiling point
- Heating a liquid (vaporization):
- $\circ \mathsf{Energy}\ \mathsf{transferred}\ \mathsf{makes}\ \mathsf{liquid}\ \mathsf{particles}\ \mathsf{move}\ \mathsf{faster}$
- $\circ\operatorname{\sf Forces}$ of attraction weaken
- Highest energy particles escape first
- Liquid starts to evaporate temp. below b.p.
- Forces weaken further particles move faster & spread
 Liquid boils temp. at b.p.

1111

Forces weaken More vapor

- The evaporation of a liquid in a closed container
- Constant evaporation from surface
- Particles continue to break away from surface but are trapped in space above the liquid
- As gaseous particles collide, some of them hit the surface
- of the liquid again, and become trapped there • An equilibrium is set up in which number of particles
- In this equilibrium, there will be a fixed number of the gaseous particles in the space above liquid.
- Vapor pressure: pressure exerted by a vapor in equilibrium with a liquid.
- Vapor pressure increases as:

Temp. ↑ E 4.4 Solid State

Macromolecular Lattice:

• Diamond:

- High m.p./b.p. each carbon forms four covalent bonds
- \circ Hard tetrahedral structure
- Doesn't conduct heat or electricity no free e
- Used for cutting as is strongest known substance and has sharp edges

• Graphite:

- Three strong (sp²) covalent bonds
- ○Fourth e⁻ in p orbital ∴ forms a pi bond, forming a cloud of delocalised electron above and below the planes

- Layers kept together by weak Van der Waal's forces
- $\odot \mbox{High m.p./b.p.}$ strong covalent bonds throughout
- $\circ \text{Soft}-\text{forces}$ between layers are weak
- Conducts electricity has delocalized electrons
- Silicon(IV) Oxide:
- Each Si is bonded to 4 oxygen atoms, but each oxygen is bonded to 2 Si atoms
 Sand is largely SiO₂
- Similar properties to diamond

Hydrogen Bonded Lattice:

- In ice form, water molecules slow down and come closer together
- Due to polarity, molecules form hydrogen bonds between lone pairs of oxygen & $\delta^+{\rm charge}$ of hydrogens
- Each water molecule has 2 H-bonds
- They arrange themselves into an open crystalline, hexagonal structure
- Due to large spaces, ice is less dense than water
- Effect of Hydrogen Bonding on Physical Properties: • Relatively high m.p./b.p.: many strong H-bonds
- High viscosity: hydrogen bonding reduces ability of water molecules to slide over each other
- **High surface tension:** hydrogen bonds in water exert a downward force on surface of liquid
- Ice less dense than water: larger spaces between molecules in hexagonal structure

Simple Molecular Lattice:

- Iodine:
 - $\,\circ\,$ Dark grey crystalline solid; vaporizes into purple gas
 - \circ m.p./b.p. are slightly higher than room temp
 - $\,\circ\,$ Slightly soluble in water; dissolves in organic solvents
 - Diatomic molecule formed due to covalent bond between individual atoms Strong covalent bonds within each I₂ molecule
 - Molecules have weak Van der Waals forces of attraction between them

Weak van der Waals' forces between $I_{\rm 2}$ molecules

• Fullerenes:

4.5 Ceramics

- Ceramic: an inorganic non-metallic solid prepared by heating one or a mixture of substance(s) to a high temp.
- Most ceramic are giant molecular structures
- Properties of ceramics:
- \circ High m.p./b.p. and hard strong covalent bonds
- $\circ \text{Don't}$ conduct electricity/heat no mobile ions or e^s
- $\circ \mbox{Chemically unreactive} e^{\mbox{-}s}$ held in covalent bonds

4.6 Recycling

- Finite resource: resource which doesn't get replaced at the same rate that it is used up.
- Examples of finite resources: copper, aluminium, glass
- Advantage of Recycling:
 O Saves energy
 O Reduces
- environmental issues O Conserves ore supplies O Less wastage O Cheaper than extracting

5. CHEMICAL ENERGETICS

5.1 Energy Change in Reactions

Exothermic Reactions	Endothermic Reactions		
 Energy given out 	 Energy taken in 		
 Surrounding warmer 	 Surrounding cooler 		
 Bond making 	 Bond breaking 		
• ΔH negative	• ΔH positive		
$E_{Reactants} > E_{Products}$	$E_{Reactants} < E_{Products}$		

5.2 Enthalpy Change Definitions

 \odot Solution Conc.: $1mol \ dm^{-3}$

1							
	Standard molar enthalpy change of Combustion Formation Solution Hydration Atomisation Neutraliza					Neutralization	
	ΔH_{C}	ΔH_f	ΔH_{sol}	$\Delta \boldsymbol{H}_{hyd}$	$\Delta \boldsymbol{H}_{at}$	ΔH_n	
		l	Enthalpy ch	ange wh	en	1	
	1 mole of element or compound is completely combusted	1 mole of compound is formed from its elements	1 mole of a solute is dissolved in a solvent to form an infinitely dilute solution	 1 mole of ions in the gas phase are dissolved in water 	1 mole of gaseous atom formed from its element	1 mole of H^+ and OH^- combine to form 1 mole of H_2O	
	under standard conditions in their standard states						

5.3 Bond Energy

- Energy needed to break a specific covalent bond
- Also how much energy is released when a bond forms

5.4 Calculating Enthalpy Changes

 $\Delta H = -mc\Delta T$

- \bullet When substance dissolved in water use $c\ \&\ m$ of water
- ΔT is change in temp.: add –ve or +ve to show rise/fall

<u>5.5 Hess's Law</u>

- The total enthalpy change in a chemical reaction is independent of the route by which the chemical reaction takes place as long as the initial and final conditions are the same.
- Reason to use Hess's Law:
- Std. conditions hard to maintain (e.g. exo/endo)
 Elements don't always react directly

5.6 Calculating Enthalpy Change of...

...Reaction from Formation

...Formation from Combustion

...Hydration from Anhydrous Salt

...Reaction from Bond Energies

6. ELECTROCHEMISTRY

6.1 Calculating Oxidation Numbers

- Ionic Molecules: group number = valence electrons
- Covalent molecules:

• Rules:

- Atoms in a diatomic molecule; oxidation number
 = 0
- Oxygen in a compound; oxidation number = -2
- Oxygen as peroxide; oxidation number = -1
- 1st group elements & hydrogen; oxidation number = +1
- H with highly reactive metal; oxidation number =
 -1
- Following these rules, all other atoms in a covalent bond must balance out the charge

6.2 Redox Reactions

- Reaction where both oxidation and reduction occur
- Can be shown with changes in oxidation numbers of elements from the product side to the reactant side
- E.g. $Ca_2Si + 6H_2O \rightarrow 2Ca(OH)_2 + SiO_2 + 4H_2$ $\circ Ca = +4 \rightarrow +2 \implies$ gain of negative charge \therefore reduction $\circ Si = -4 \rightarrow +4 \implies$ loss of negative charge \therefore oxidation

<u>6.3 Balancing Equations</u>

- Equation: $HI + HNO_3 \rightarrow I_2 + N_2O_3 + H_2O$
- Half ionic: $2I^- 2e^- \rightarrow I_2$ $N^{+5} + 2e^- \rightarrow N^{+3}$
- For every 2 iodines, there will be 1 nitrogen
- Thus first put in correct ratio for iodine and nitrogen then balance hydrogens and oxygens
- Balanced: $4HI + 2HNO_3 \rightarrow 2I_2 + N_2O_3 + 3H_2O$

6.4 Electrolysis

- Electrolysis: decomposition of an electrolyte by an electric current. Electrical energy is used to bring about a chemical reaction; endothermic
- Electrolyte: an aqueous solution of an ionic substance or a molten ionic salt that conducts electricity due to mobile ions
- Electrodes:
- o Rods which help current enter the electrolyte
- Inert electrodes: do not take part in the reaction e.g. graphite or platinum. Steel/titanium used in industry.
- $\circ \textbf{Reactive electrodes:}$ take part in the reaction

<u>6.5 Products of Electrolysis</u>

7. EQUILIBRIA

- Reversible reaction: a reaction in which products can be changed back to reactants by reversing the conditions
- Dynamic Equilibrium: the state of a reversible reaction carried out in a closed container where the rates of forward and backward reactions are equal and constant

7.1 Le Chatelier's Principle

• When a chemical system in dynamic equilibrium is disturbed (conditions changed) it tends to respond in such a way so as to oppose the change and a new equilibrium is set up

By Le Chatelier's	temperature	is increased, the	the endothermic side
principle, when	pressure	system opposes the change by	the side with fewer gas mols
the	reactant conc.	favouring	the forward reaction

7.2 Equilibrium Constants Equilibrium Constant

- Smaller value of $K_C/K_P \Rightarrow$ equi. towards reactants side
- K_C/K_P changes only with changes in temperature
- The amount of reactants that disappear will always appear in the products in the same ratio as present in a balanced equation

<u>7.3 Manufacture of Ammonia</u>

Sulphuric Acid

- SO₃ not dissolved directly into water because reaction explosive and causes H₂SO₄ to vaporize
- Forward reaction exothermic \therefore temp. not too high so rate of backward reaction doesn't increase & not too low so particles have E_K for collision and catalyst works
- Since reaction highly exothermic, gases must be cooled
- No impurities otherwise catalyst will be poisoned
- Atmospheric pressure enough because equilibrium already favours product side

<u>7.5 Acid-Base Equilbria</u>

- Brønsted-Lowry Theory:
- \circ An acid is a proton (H⁺) donor
- \circ A bases is a proton (H⁺) acceptor
- Amphoteric: substances that can act like bases or acids

7.6 Conjugate Pairs

• When acid-base reacts, an equilibrium mixture is formed

- HCl is a conjugate acid of base Cl^- & vice versa
- HCl is acid-I and Cl^- is base-I
- NH_4^+ is a conjugate acid of base NH_3 & vice versa
- NH_4^+ is acid-II and NH_3 is base-II

7.7 Strong and Weak Acids and Bases

- Strong acids/bases: acids/bases which dissociate almost completely in solutions
- Weak acids/bases: acids/bases which are only partially dissociated in solutions
- Strong and weak acids and bases can be distinguished by the pH value of their aqueous solutions
- Monoprotic acids: donate one H⁺ proton per molecule
- Diprotic acids: donate two H⁺ protons per molecule

8. REACTION KINETICS

- Rate of a reaction: change in concentration of reactants or products per unit time
- Activation energy: minimum energy colliding particles must possess for a successful collision to take place
- Catalysis: acceleration of a chemical reaction by catalyst

8.1 Effect of Concentration Changes

• Increasing conc. of reactants increases rate of reaction: more particles per unit volume, collision rate between reacting particles increases, ∴ rate of successful collision increases, resulting in increased rate of reaction.

8.2 Maxwell-Boltzmann Theory

- Explains effect of temp. & catalyst on rate of reaction
- Based on distribution of energy among reacting molecules under different conditions

8.3 Effect of Temperature

• Number of collisions and chance of success will increase

8.4 Effect of Catalyst

- **Catalyst:** a substance that increases rate of reaction but remains chemically unchanged itself at the end
- Does not alter the chemical composition of substances and only lowers the activation energy
- It provides a new route or mechanism to follow for reactants that requires less energy

- Curve unchanged, only activation energy changes
- Homogeneous catalysts: reactant and catalyst are in the same physical state
- Heterogeneous catalysts: reactant and catalyst are in different physical states
- Enzymes: a protein molecule that is a biological catalyst. Most are specific to a substrate & function as lock-key

9. CHEMICAL PERIODICITY

Group 1 2 3 4 5 6 7 0 Element Sodium Magnesium Aluminium Silicon Phosphorous Sulphur Argon Character Metal Metal Metal Aluminium Silicon Phosphorous Sulphur Argon Structure Metallic lattice Meta									
ElementSodiumMagnesiumAluminiumSiliconPhosphorusSulphurChlorineArgonCharacterMetalMetalMetalMetalMetaloidMetaloidMetaloidMetaloidStructureMetalic latticeMetalic latticeMetaloidMetaloidMetaloidMetaloidStructureMetalic latticeMetalic latticeMetaloidMetaloidMetaloidBondingMetallic bondMetallic latticeMetaloidMetaloidMetallic bondMetallic bondMetaloidMetaloidMetaloidMetallic bondMetallic bondMetaloidMetaloidMetaloidDiagramMetaloidMetaloidMetaloidMetaloidDiagramMetaloidMetaloidMetaloidMetaloidDiagramMetaloidMe	Group	1	2	3	4	5	9	7	0
CharacterMetalMetalloidNon-metalsStructureStructureMetalloidMetalloidSimple aconsStructureMacromolecularMacromolecularSimple aconsSimple aconsBondingMetallic butCovalent bondsCovalent bondsIntra = covalentSimple aconsBondingMetallic butEtween actionsCovalent bondsIntra = covalentMonsheld byDiagramMetallic butInter = weak VDWSMonsheld byNDWSDiagramMetallic butInter = weak VDWSMonsheld byNDWS	Element	Sodium	Magnesium	Aluminium	Silicon	Phosphorous	Sulphur	Chlorine	Argon
StructureGiant metallic latticeMacromolecularSimple molecular covalentSimple atomsBondingMetallic bond between cations and delocalized eMacromolecularSimple molecular covalentSimple atomsBondingMetallic bond between cations and delocalized eMacromolecularCovalent bondsMatronalitra = covalentAtoms held byDiagramMetallic bondEtowalentDiagramEtowalentEtowalentSimple atomsDiagramMetallic bondMetallic bondEtowalentBondingMetallic bondDiagramMetallic bondMetallic bondMetallic bondMetallic bondDiagramMetallic bondMetallic b	Character		Metal		Metalloid		Non-n	netals	
BondingMetallic bond between cations and delocalized eCovalent bonds between atomsAtoms held by VDWsDiagramInter = weak VDWsInter = weak VDWsAtoms held by DWs	Structure		Giant metallic lattice		Macromolecular	Sim	ple molecular cova	lent	Simple atoms
Diagram Notain bound of the second of th	Bonding	hand nilletonn	bac anotice acoutod	l delecalized e	Covalent bonds		Intra = covalent		Atoms held by
Diagram	Sinning		מברארכבוו במרוטווא מוור	י מבוחרמווזבח ב	between atoms		Inter = weak VDW		VDWs
	Diagram								

9.1 F	<u> Reaction</u>	of Elements with	<u>Oxygen</u>			9.2
	Formula	e Reaction	Structure	Oxid.	Nature	
		Burns yellow		۲ -	Dacio	Na
PZ	Nd 2U(s)	flame		⊣ +	DdslC	Mg
~ 14	0~14	Burns blinding	סחות וסחוכ ו _{סללל} ים	5	Dacio	Al ₂ (
ມ ≥		white flame	ופורוכב	74	DdSIC	SiO
A	$AI_2O_{3(s)}$	Coating		+3	Amphoteric	P_2O
Si	SiO _{2(s)}	Coating	Giant covalent	+4	W. acidic	P ₂ C
2	$P_2O_{3(s)}$	Burns yellow		+3		SO
ጉ	$P_2O_{5(s)}$	flame	Simple	+5	o. Acidic	SÖ
Ĺ	SO _{2(g)}		molecular	+4	C acidia	
n	SO _{3(g)}			+6	S. acidic	9.4
						• 4
9.31	<u>keaction</u>	of Na & Mg with V	Vater			
a e N	Mater	2Na/: + 2H2O.: → 2N2		Very fast	, floats,	• Si
			O II(aq) - 112(g)	forms ba	ll & dissolves	• Su

	9.2 Rea	<u>ction of Oxides with Water</u>		
-		Reaction	Oxid.	Nature
-	$Na_2O_{(s)}$	$Na_2O_{(s)} + H_2O_{(l)} \rightarrow 2NaOH_{(aq)}$	+1	S. Alkaline
	MgO _(s)	$MgO_{(s)} + H_2O_{(l)} \rightarrow Mg(OH)_{2(aq)}$	+2	W. Alkaline
	$AI_2O_{3(s)}$	NO DEACTION		
-	SiO _{2(s)}	NUNEAUNU		
	$P_2O_{3(s)}$	P ₂ O _{3(s)} + 3H ₂ O _(l) →2H ₃ PO _{3(aq)}	+3	
	$P_2O_{5(s)}$	$P_2O_{5(s)} + 3H_2O_{(i)} \rightarrow 2H_3PO_{4(aq)}$	+5	o. Aciuic
_	SO _{2(g)}	$SO_{2(g)} + H_2O_{(I)} \rightarrow H_2SO_{3(aq)}$	+4	C Acidic
	$SO_{3(g)}$	$SO_{3(g)} + H_2O_{(l)} \rightarrow H_2SO_{4(aq)}$	+6	3. Acidic

111111111

9.4 Acid-Base Reactions

 Aluminium oxide is amphoteric ∴ reacts with acid and base Al₂O₃ + H₂SO₄ → Al₂(SO₄)₃ + H₂O | Al₂O₃ + NaOH → NaAlO₂ + H₂O
 Silicon dioxide is acidic: SiO₂ + NaOH (hot & conc.) → Na₂SiO₃

• Sulphur dioxide and trioxide are strongly acidic

Very slow Very fast

 $Mg_{(s)} + 2H_2O_{(i)} \rightarrow Mg(OH)_{2(aq)} + H_{2(g)}$

Mg & Water

Mg & Steam | $Mg_{(s)} + H_2O_{(g)} \rightarrow MgO_{(s)} + H_{2(g)}$

	With	Produces
$SO_{2(g)}$	NaOH	NaHSO _{3(aq)}
$SO_{2(g)}$	Excess NaOH	Na ₂ SO _{3(aq)} + H ₂ O
$SO_{3(g)}$	NaOH	NaHSO _{4(aq)}
$SO_{3(g)}$	Excess NaOH	Na ₂ SO _{4(aq)} + H ₂ O

9.5 Reactions of Elements with Chlorine

	Formula	Structure	Oxid.	Nature
Na	NaCl _(s)	Ciantionic	+1	Neutral
Mg	MgCl _{2(s)}	Giant Ionic	+2	Neutral
Al	AICI _{3(s)}		+3	Acidic
Si	SiCl _{4(I)}	Cimento	+4	S. Acidic
р	PCI _{3(I)}	Simple	+3	S. Acidic
P	PCI _{5(I)}	molecular	+5	S. ACIUIC

9.6 Reactions of Chloride with Water

	Reaction	Nature
NaCl _(s)	$NaCl_{(s)} + H_2O_{(l)} \rightarrow NaCl_{(aq)}$	Neutral
MgCl _{2(s)}	$MgCl_{2(s)} + H_2O_{(I)} \rightarrow MgCl_{2(aq)}$	W. Acidic
AICI _{3(s)}	$AICI_{3(s)} + H_2O_{(I)} \rightarrow AI_2O_{3(s)} + HCI_{(g)}$	Acidic
SiCl _{4(I)}	$SiCl_{4(I)} + H_2O_{(I)} \rightarrow SiO_{2(s)} + HCl_{(g)}$	S. Acidic
PCI _{3(I)}	$PCI_{3(I)} + H_2O_{(I)} \rightarrow H_3PO_{3(aq)} + HCI_{(g)}$	S Acidic
	$PCI_{5(1)} + H_2O_{(1)} \rightarrow H_3PO_{4(ag)} + HCI_{(g)}$	S. ACIUIC

- Sodium chloride simply dissolves in water. Water is polar
 positive Na⁺ attracted to OH⁻ while Cl⁻ attracted to H⁺
- MgCl₂ slightly acidic because Mg ion has smaller radius & higher charge ∴ attraction to water is so strong that H₂O loses a proton and solution becomes slightly acidic

9.7 Atomic Radius

- P⁺ in nucleus increases so nuclear charge increases
- There are more e⁻, but increase in shielding is negligible because each extra e⁻ enters same principal energy level
- ∴ force of attraction between nucleus & e⁻ increases ...
- So atomic radius decreases.

9.8 Ionic Radius

• Ionic radius decreases across a period however, since non-metals gain electrons, they have one more shell than metals therefore they always have a larger radius than metal ions

- Na → Al m.p. increases because delocalized e⁻ per atom increases making metallic bond stronger
- Si has highest m.p. due to giant covalent structure
- The larger the molecule size, the stronger the VDW forces \therefore S₈ > P₄ > Cl₂ > Ar

9.10 Electrical Conductivity

- Na < Mg < Al because no. of delocalized electrons which can carry charge increases
- Silicon is a semi-conductor
- Non-metals covalent \therefore no charge

9.11 Electronegativity

 Increases across period because the bonded e⁻ are in the same energy level but are attracted more strongly as no. of protons increases

9.12 First Ionization Energy

- Generally increases as no. of protons increases
- Decrease Mg → Al: more distant and less effective nuclear charge on 3p orbital
- Decrease P → S: in S, one electron paired ∴ causing repulsion and easier to lose electron

10. GROUP II – ALKALINE EARTH METALS

- m.p./b.p. decreases down group: atoms/ions get larger, distance between nuclei & e's increases : bonds weaker
- m.p./b.p. higher in gp. 2 than 1: 2e⁻s per atom donated into delocalized system ... metallic bonding stronger
- **density increases down group:** mass of atoms increases faster than their size (volume) as atomic no. increases

<u> 10.1 Reactivity of Alkaline Earth Metals</u>

- Atomic radius increases down group
- Ionisation energy (I.E) decreases down the group
- The lower the I.E, easier to remove electrons
- Hence metals more reactive down the group
- Gp. 2 less reactive than gp. 1 since they need to lose two e⁻s ∴ total I.E = 1st I.E. and 2nd I.E.
- Gp. 2 metals form ionic compounds

10.2 Reaction of Gp. 2 Metals with Oxygen

 $M_{(s)} + O_{2(g)} \rightarrow 2MO_{(s)}$

- All gp. 2 metals tarnish in air forming oxide coatings
- Burn vigorously in oxygen forming white solids

10.3 Reactions with Water

 Metals:
 $M_{(s)} + H_2 O_{(l)} \rightarrow M(OH)_{2(aq)} + H_{2(g)}$

 Metal Oxides:
 $MO_{(s)} + H_2 O_{(l)} \rightarrow M(OH)_{2(aq)}$

- Solubility of M, MO and M(OH)₂ increases down group
- Alkalinity of solution increases down the group
- Solubility of M and MO increases do+wn the group
- \bullet Solubility of $\mathsf{M}(\mathsf{OH})_2$ and MSO_4 decreases down group

10.4 Reaction with Acid

$$\begin{split} M_{(s)} + Acid_{(aq)} &\rightarrow Salt + Hydrogen \\ MO_{(s)} + Acid_{(aq)} &\rightarrow Salt + Water \\ M(OH)_{x(s)} + Acid_{(aq)} &\rightarrow Salt + Water \\ MCO_{3(s)} + Acid_{(aq)} &\rightarrow Salt + Water + Carbon Dioxide \end{split}$$

10.5 Thermal Decomposition of Gp. 2 Metals

$$MCO_{3(s)} \xrightarrow{\Delta H} MO_{(s)} + CO_{2(g)}$$
$$2M(NO_3)_{2(s)} \xrightarrow{\Delta H} 2MO_{(s)} + 2NO_{2(g)} + O_{2(g)}$$

- NO₂: thick brown, acidic and soluble gas
- Thermal stability increases down the group ∴ decomposition becomes more difficult.

10.6 Uses of Group II Metals

SOLID CALCIUM HYDROXIDE (slaked lime)

- Calcium oxide (lime): basic oxide used to neutralize acidic soil and used as a drying agent for drying ammonia
- Calcium carbonate (limestone): used as building material (cement, concrete) etc., for extraction of iron, glass industry, neutralize soil or chemical waste

11. GROUP 17 - HALOGENS

11.1 Trends in Colour and Volatility

Fluorine	Yellow	Car					
Chlorine	Yellow-Green	Gas	b.p	ses	lit∨	ses	
Bromine	Orange-Brown	Liquid	8	J Ga	lati	rea	\mathbf{V}
Iodine	Grey-Blue	Solid	n.p	inc	No/	dec	
Astatine	Black	50110	C			Ū	

• As atomic number increases, the number of electrons increases, this increases VDW forces so stronger bonds thus m.p./b.p. increases and volatility decreases

<u>11.2 Oxidising Ability</u>

- Halogens have high electron affinity (they gain electrons easily) hence they are good oxidising agents
- Oxidising ability decreases down the group because electron affinity decreases as atomic size increases.

11.3 Some reactions of the halide ions

X _{2(g)}	+	H _{2(g)}	\rightarrow	2HX _(g)
-------------------	---	-------------------	---------------	--------------------

Product	Reaction Description
HF	Reacts explosively in all conditions
HCI	Reacts explosively in sunlight
HBr	Reacts slowly on heating
HI	Forms an equilibrium mixture on heating

- Thermal stability of halogen hydrides decreases down the group because:
- \circ Size of halogen atom increases
- \circ \therefore nuclear attraction decreases
- \circ The H X bond becomes longer and weaker
- $\circ \mathsf{Thus}$ less energy needed to break the bond
- Bond energies decrease down the group

(Sub) Halide ions and aq. Silver Ions

	Ag ⁺ _(aq)	$+ X^{-}_{(aq)} \rightarrow AgX_{(s)}$		
Halide	With Silver	With dilute	With conc.	
lon	Nitrate	aq. ammonia	aq. ammonia	
Cl ⁻	White ppt.	ppt. dissolves		
Br⁻	Cream ppt.		ppt. dissolves	
-	Yellow ppt.			

• The solubility of these ppts. are tested with dilute and conc. aq. ammonia to confirm presence of ion.

• If ppt. dissolves, it forms a complex ion:

$AgX_{(s)} + 2NH_{3(aq)} \rightarrow [Ag(NH_3)_2]^+_{(aq)} + X^-$

• The complex ion formed is called Diamine Silver(I) ion $[H_3N: \rightarrow Ag \leftarrow : NH_3]^+$

<u>(Sub) Halide ions and aq. Sulphuric Acid</u>

Metal Halide + Conc. $H_2SO_{4(aq)} \rightarrow Hydrogen Halide$

- \bullet Conc. $H_2SO_{4(aq)}$ is an oxidising agent
- This reaction is used for preparation of hydrogen halides

Chlorine	$NaCl_{(s)} + H_2SO_{4(aq)} \rightarrow HCl_{(g)} + NaHSO_{4(aq)}$
Bromino	$NaBr_{(s)} + H_2SO_{4(aq)} \rightarrow HBr_{(g)} + NaHSO_{4(aq)}$
Бготппе	$HBr_{(g)} + H_2SO_{4(aq)} \rightarrow Br_{2(g)} + SO_{2(g)} + H_2O_{(I)}$
	$NaI_{(s)} + H_2SO_{4(aq)} \rightarrow HI_{(g)} + NaHSO_{4(aq)}$
Iodine	$HI_{(g)} + H_2SO_{4(aq)} \rightarrow I_{2(g)} + SO_{2(g)} + H_2O_{(I)}$
	$HI_{(g)} + H_2SO_{4(aq)} \rightarrow I_{2(g)} + H_2S_{(g)} + H_2O_{(l)}$

11.4 The reactions of chlorine with aqueous sodium hydroxide

- **Disproportionation:** a reaction in which the same substance is oxidized and reduced simultaneously producing two different products
- When chlorine reacts with a solution of cold aqueous sodium hydroxide, the disproportionation goes to lower oxidation states

 $Cl_2 + 2NaOH \rightarrow NaCl + NaClO + H_2O$

 \bullet With a hot solution, the oxidation state of chlorine goes up to +V

 $3Cl_2 + 6NaOH \rightarrow NaClO_3 + 5NaCl + 3H_2O$

 This happens as the chlorate is formed by disproportionation of hypochlorite and hypochlorous acid

$$ClO^- + 2HClO \rightarrow ClO_3^- + 2HCl$$

Higher temperatures promotes the formation of hypochlorous acid through hydrolysis of hypochlorite and therefore speeds up the reaction

<u>11.5 Some important uses of halogens and of</u> <u>halogen compounds</u>

- Fluorine:
- oTo make chlorofluorocarbon (CFCs)
- As fluoride in toothpaste
- To make polytetrafluoroethylene (PTFE) non sticking coating in pots and pans
- Bromine and lodine: manufacture of photographic films
- Chlorine:
- \circ In bleaches
- oTo make PVC and chlorofluorocarbon (CFCs)

 $\circ As \ solvents$

• Use of chlorine in water purification:

 $\circ\ensuremath{\mathsf{The}}$ oxidising power of chlorine is used in treatment of water to kill bacteria

$$Cl_{2(aq)} + H_2O_{(I)} \rightarrow HCl_{(aq)} + HCIO_{(aq)}$$
$$HCIO_{(aq)} \rightarrow HCl_{(aq)} + O$$

 This disproportionation reaction produces reactive oxygen atoms which kill bacteria

12. NITROGEN AND SULPHUR

<u>12.1 Lack of Reactivity of Nitrogen</u>

- Nitrogen molecule has three strong covalent bonds
- Bond is very strong and requires high energy for splitting the two nitrogen atoms of a molecule.
- It reacts only under extreme temperature or pressure or in presence of catalyst.

<u>12.2 Ammonium</u>

- Lone pair of e s of nitrogen forms a coordinate bond with the H⁺ ion
- Formation: $NH_{3(g)} + H^+ \rightarrow NH_4^+$
- Shape: tetrahedral
- Bond angle: 109.5°
- Bond length: equal lengths

Displacement of ammonia from its salts:

 $\begin{array}{cccc} & \text{Any} & & \text{Warm} \\ \text{Ammonium} & + & \begin{array}{c} & \text{Any} & & \text{Warm} \\ \text{Ammonia} & & \\ \text{Base} & & & \begin{array}{c} \text{Gas} & + & \text{Salt} + & \text{Water} \\ \end{array} \end{array}$

<u>12.3 Uses of Ammonia & its Compounds</u>

- Used in the production of nitric acid
- Used in the production of inorganic fertilizers
- Used in the production of nylon
- Used in the production of explosives

12.4 Eutrophication

- Nitrate fertilisers leach into rivers and lakes after rain
- Water plants grow more than usual
- They block sunlight and kill plants underneath
- Bacteria/fungi decompose remains using the O2
- Fish and other creatures die from oxygen starvation

<u>12.5 Oxides of Nitrogen</u>

 $N_{2(g)} + O_{2(g)} \rightarrow 2NO_{(g)}$ or $N_{2(g)} + \frac{1}{2}O_{2(g)} \rightarrow NO_{2(g)}$

- \bullet Naturally: during lightning, E_A provided for N_2 to react
- Man-made: in car engine, high temp. and pressure

- Catalytic convertors: exhaust gases passed through catalytic convertors containing a catalyst (platinum/ palladium/nickel) helping to reduce oxides to nitrogen.
- Catalytic role in oxidation of sulphur dioxide:

 $\rightarrow 2NO(g) + O_2(g) \longrightarrow 2NO_2(g)$ $SO_2(g) + NO_2(g) \longrightarrow SO_3(g) + NO(g)$

12.6 Pollution

Acid Rain: $SO_3 + H_2O \rightarrow H_2SO_4$

 $2NO_2 + H_2O \rightarrow HNO_3 + HNO_2 \text{ or } NO_2 + H_2O + \frac{1}{2}O_2 \rightarrow HNO_3$

 Damages trees & plants, kills fish and other river life, buildings, statues and metal structures

Combustion Pollutants:

- Nitrogen oxide (NO): formed by reaction of N₂ and O₂ in the engine, forms acid rain and respiratory problems
- **Carbon monoxide (CO):** source: incomplete combustion of hydrocarbon fuel, toxic effect on haemoglobin

<u>12.7 Food Preservation</u>

- SO₂ is used by itself or as a sulphite to preserve food SO₂ + H₂O \rightarrow H₂SO_{3(aq)}
- SO₂ & sulphites inhibit growth of bacteria, yeasts, etc. & are reducing agents, so reduce rate of oxidation of food.
- Used to prevent spoilage of dried fruit, dehydrated vegetables and fruit juices.

13. INTRODUCTION TO ORGANIC CHEMISTRY

- Organic chemistry: study of hydrocarbons and their derivatives
- Carbon can form a variety of compounds because:
 - Carbon is tetravalent
 - Carbon-carbon bonds can be single, double or triple
 - $\,\circ\,$ Atoms can be arranged in chains, branches and rings
- Homologous series: a series of compounds of similar structures in which:
 - \circ contain the same functional group
 - \circ all share same general formula
 - $_{\odot}$ formula of homologue differs from neighbour by CH_{2}
 - o similar chemical properties
 - \circ gradual change in physical properties as M_{r} increases
- Functional group: an atom or group of atoms in an organic molecule that determine the characteristic reactions of a homologous series.
- Alkyl group: a reactive group which is alkane minus 1 H

13.1 Hybridization

• Hybridisation: mixing up of different atomic orbitals resulting in new orbitals of equal energy.

• Carbon's electron configuration:

Ground State	e		Excited State
2s 2p)	2s	2p
$ \begin{array}{c c} x & y \\ \uparrow & \uparrow \end{array} $		ſ	$\begin{array}{c cc} x & y & z \\ \uparrow & \uparrow & \uparrow \end{array}$
sp³	sp²		sp
All orbitals mix	2s, 2p _x , 2p _y	mix	2s and 2p ^x mix
4 sp ³ orbitals	3 sp ² orbita	ls	2 sp orbitals
	1 pure p ork	oital	2 pure p orbitals
Ratio	o of charact	eristics	s s : p
1:3	1:2		1:1
A	2	3	

Organic Family	Suffix	Exampl	e
Alkanes	-ane	H H—C—H H	Methane
Alkenes	-ene	H H C=C H	Ethene
R — X Halogenoalkanes	haloane	H H 	Chloroethane
R-OH Alcohols	-ol	Н Н-С-О-Н Н	Methanol
Aldehydes	-al	O II H H	Methanal
Ketones	-one	H - C - H H - C - C - H H - C - H	Propanone
Carboxylic Acid	-oic	H OH	Methanoic acid
Esters	-oate	H O H I II I H-C-C-O-C-H I I H H	Methyl ethanoate
R-NH ₂ Amines	-amine	H H NCH H H	Methylamine
R-CN Nitriles	-nitrile	H ⊢C−C≡N H	Ethyl nitrile

13.2 Classes of Compound

<u>13.3 Types of Formulae</u>

Hexane					
Displayed Formula	Structural Formula				
H H H H H H H-C-C-C-C-C-C-C-H H H H H H H H H H H H H	CH ₃ -CH ₂ CH ₂ CH ₂ CH ₂ -CH ₃ or CH ₃ (CH ₂) ₄ CH ₃				
Skeletal Formula	Molecular Formula				
	C ₆ H ₁₄				

<u>13.4 Nomenclature</u>

- Select longest chain as the main chain
- Other carbon chains as substituent alkyl groups
- Give lowest number C in main chain to substituent
- If different alkyl groups present on identical position, give simpler alkyl smaller number
- Two or more alkyl groups present, order alphabetically
- If same substituent repeated use di, tri, tetra prefix
- If ring of carbon present, use prefix cyclo
- Write position of double bond in alkene e.g. but-1-ene

13.5 Breaking of Covalent Bonds

Homolytic Fission:

- Two atoms sharing e⁻ pair of similar electro-tivity
- When bond breaks, each atom takes one e⁻ from pair of electrons forming free radicals
- Free radicals: electrically neutral atoms or group of atoms with unpaired electrons → very reactive
- Free radical reaction catalysed by heat or light

Heterolytic Fission:

- Two atoms sharing e⁻ pair are of different electro-tivity
- When bond breaks, one of the bonded atoms takes both bonding e⁻s
- Results in formation of +ve and -ve ions
- If +ve charge on C, its called carbocation or carbonium
- If -ve charge on C, its called carbanion

Note: homolytic fission require less energy than heterolytic

13.6 Types of Reagents

Nucleophilic reagent (nucleophile): donator of pair of e⁻

- Must have lone pair of e⁻s
- Attack centre of +ve charge (positive pole)
- Reaction with nucleophile called nucleophilic reactions
- Examples: CH⁻, Cl⁻, NH₃, H₂O, CN⁻

Electrophilic reagent (electrophile): acceptor of pair of e

- +ve ions or e⁻ deficient molecules
- Attack regions of high e⁻ density
- Examples: Br⁺, CH₃⁺, AlCl₃

13.7 Types of Reaction

- Addition reaction: single product formed
- o Electrophilic addition (alkenes)
- o Nucleophilic addition (carbonyl compounds)
- Substitution reaction: two products formed
- Nucleophilic substitution (halogenoalkanes)
- o Free radical substitution (alkanes)
- Elimination reaction: more than one product formed, small molecule removed from reactant (alcohols and halogenoalkanes)
- Hydrolysis reaction: breaking down of molecule by water, sped up by acid or alkali (esters and alkenes)

13.8 Oxidation and Reduction

- Oxidation: addition of oxygen or removal of hydrogen
- Reduction: addition of hydrogen or removal of oxygen

13.9 Shapes of Ethane and Ethene

<u>13.10 Isomerism</u>

• Existence of two or more compounds with the same molecular formula but different structural formula

Note:

- Straight chain alkanes have higher b.p. than branched
- Branching makes molecule more spherical → reduces contact points → VDW forces decreases

<u>13.11 Chain Isomers</u>

- Isomers have different carbon chain length
- Same chemical properties but slightly different physical

<u>13.12 Position Isomers</u>

- Isomers differ in position of substituent atoms or group or the functional group
- Same chemical properties but slightly different physical
- Example:

<u>13.13 Functional Isomers</u>

- Isomers have different functional groups, belong to different homologous series
- Have different physical and chemical properties

Ratio of C : H Functional Gps		Example	
1:3	Alcohol & Ether	C ₂ H ₆ O	
1:2	Aldehyde & Ketone	C ₃ H ₆ O	
1:2	Carboxylic acid &	CHO	
Must have O ₂	Ester	$C_3\Pi_6O_2$	

<u>13.14 Geometric (cis/trans) Isomers</u>

- Shown only by alkenes
- Arises due to restriction of double bond
- Only possible when each carbon has 2 different groups
- cis-trans isomers have different b.p.
- cis isomers have higher dipole
- trans isomer of symmetrical alkene has zero dipole

<u>13.15 Optical Isomers</u>

- Arises from different arrangement of atoms or groups in 3D space resulting in two isomers
- Have effect on polarised light
- Chiral carbon: a carbon having 4 single bonds and 4 different atoms or groups
- Isomers non-super-imposable images of each other
- Have same physical and chemical properties
- No. of optical isomers in a molecule containing n chiral carbons = 2^n

14. Hydrocarbons

<u>14.1 Properties</u> Generally unreactive:

- All C–C bonds single; alkanes = saturated hydrocarbons
- Non-polar : no center of charge to act as either nucleophile or electrophile : cannot attract polar reagents like acids, bases, metals or oxidizing agents

Physical properties:

- The volatility of the alkanes decreases and m.p/b.p increases as number of carbon atoms increases
- Reason: increasing Van der Waals forces

14.2 Combustion

- Used as fuel because they burn in oxygen to given out large amounts of energy
- Alkanes kinetically stable in presence of O₂; combustion occurs when necessary amount of E_a supplied
- Reaction occurs only in gas phase
- Complete: carbon dioxide + water
- Incomplete: carbon monoxide + carbon (soot) + water
- General Equation of Hydrocarbon Combustion:

$$C_x H_y + \left(x + \frac{y}{4}\right)O_2 \rightarrow xCO_2 + \frac{y}{2}H_2O$$

14.3 Substitution

• Alkanes react with halogens: Cl_2 and Br_2 Example: Chlorination of Methane

Reagent	Condition	Reaction		
Reagent	Condition	Туре	Mechanism	
Cl _{2(g)}	UV light	Substitution	Free Radical	

• Initiation:

 \circ Energy of a photon of light absorbed \circ Cl - Cl bond breaks homolytically

• Propagation:

 \circ Highly reactive $Cl \cdot$ collides with a CH_4 molecule forming a new free radical; $CH_3 \cdot$

 $CH_4 + Cl \rightarrow CH_3 + HCl$ $CH_3 + Cl_2 \rightarrow CH_3Cl + Cl \cdot$ \circ This can then react with another Cl_2 and process

repeats if sufficient Cl_2 present until all H are replaced

• Termination:

- Reaction ends when 2 free radicals collide & combine $CH_3 \cdot +Cl \rightarrow CH_3Cl$ $CH_3 \cdot +CH_3 \rightarrow C_2H_6$
- \bullet **Products:** forms large amounts of CH_3Cl and HCl and small amount C_2H_6; separated by fractional distillation
- Products and free radicals differ due to:
- \circ Halogen used: bromine requires more light
- Alkane used: ↑ no. of C = ↑ variety of products

<u>14.4 Cracking</u>

- Breaking of large less useful alkanes into useful, more energy value smaller products using heat & catalyst
- Products: smaller alkanes and alkenes or smaller alkenes and hydrogen gas
- Thermal cracking: high temp. & pressure
- Catalytic cracking: high temp. & catalyst

<u>14.5 Hydrocarbons as Fuels</u>

- Source of alkanes: crude oil
- Steady change in b.p. of alkanes allows crude oil to be separated by fractional distillation
- Catalytic conversion of CO and NO_x:

 $\circ 2NO_2 + 4CO \rightarrow N_2 + 4CO_2$

 \circ 2NO + 2CO \rightarrow N₂ + 2CO₂

<u>14.6 Alkenes</u>

- Unsaturated hydrocarbons
- Contain at least one C=C double bond
- General formula: C_nH_{2n} (like cycloalkanes)
- Source of alkenes:
- Cracking alkanes
- o Dehydration of alcohols
- More reactive than alkanes due to presence of double bond; pi electrons loosely and more susceptible to attacks by e⁻ deficient groups like electrophiles
- Alkenes combust completely ightarrow carbon dioxide + water
- Give energy but not used as fuels; have other uses

14.7 Electrophilic Addition Mechanism

- Electrophile forms by heterolytic fission
- Electrophile attacks double bond
- Pair of e⁻s from double bond migrate to electrophile and π bond breaks
- Carbocation formed which attacks the nucleophile

14.8 Carbocations

- Markovnikov's principle: an electrophile adds to an unsymmetrical alkene so that the most stable carbocation is formed as an intermediate
- Hydrogen binds to carbon with more hydrogens
- Inductive effect of alkyl groups:
 - Alkyl groups donate e⁻ to the ring
 - Producing a positive inductive effect
 - $\,\circ\,$ A larger alkyl group has a weaker inductive effect

14.9 Addition Reactions

<u>14.9 A</u>	ddition Reactions	H _X
ation	Alkene + $H_2 \rightarrow Alkane$ • Reagent: $H_{2(g)}$ • Condition:	$C = C \longrightarrow CO_2 + \dots$ H carbon dioxide
Hydrogena	 Catalyst: Nickel Temp.: 100°C Press.: 2 atm. Use: convert liquid oils to saturated solid fats 	$R = C = C \xrightarrow{R} C = 0 \xrightarrow{\text{further oxidation}} R - C \xrightarrow{O} OH$
Halogenation	Alkene + X₂ → Dihaloalkane • Reagent: Halogen _(aq) • Condition: r.t.p./dark	an aldehyde a carboxylic acid R^1 $C = C$ R^2 $C = 0 +$
	 Alkene + Hydrohalogen → Halogenoalkane Reagent: Hydrohalogen(g) Condition: r.t.p. 	a ketone <u>14.11 Polymerization</u> • Repeated addition of 1000s of alkene molecules
Hydration	Alkene + H ₂ O _(g) → Alcohol • Reagent: steam • Condition: • Catalyst: H ₃ PO ₄ – phosphoric acid • Temp.: 300°C • Press.: 70atm	(monomer) to each other forming a macromolecule • Polyethene: • LDPE: cling wrap • HDPE: water pipes, wire insulation • Polychloroethene (PVC):
<u>14.10</u> • Both (• KMnC With Cc • Diol is	Oxidation of Alkenes oxidation and addition to double bond involved D_4 changes from pink to colourless old Dil. Acidified KMnO₄/H⁺ is formed $CH_2=CH_2 + H_2O + [O] \longrightarrow CH_2-CH_2$ I = I OH OH oxygen from the oxidising agent	 Water pipes Insulation of wires General conditions: high pressure, high temperature and catalyst Disadvantages: Non-biodegradable: does not break down so increases amount of volume needed for landfill sites Combustion produces harmful gases which contribute to global warming e.g. SO₂, CO₂ and HCl from PVCs
With Ho • Leads • Two o • Produ	ot Conc. Acidified KMnO ₄ /H ⁺ to the rupture of the double bond compounds are formed acts formed depend on alkene	 Disposal of Polymers: Recycle existing plastic Make polymers biodegradable by adding starch units

15. HALOGEN DERIVATIVES

15.1 Types of Halogenoalkanes

<u> 15.2 Strength of C – Hal Bond</u>

	Polar Nature	Bond Energy	Reactivity
Fluoro	e.	e	SS
Chloro	Decreas	eas	ase.
Bromo		€ecr	€
Iodo		D	드
	Electro-tivity	Bond length inc	creases, bond
	decreases	energy decreases, lower E _A so	
	down group	more reactive	

15.3 Nucleophilic Substitution Mechanism

- The C X bond is a polar bond, has partial charges due to high electro-tivity of halogen.
- \bullet The δ + carbocation is easily susceptible to attack by a nucleophile

S_N1 Mechanism:

- Unimolecular only one molecule involved in 1st step
- Tertiary halogenoalkanes

S_N2 Mechanism:

- \bullet Bimolecular two molecules involved in $\texttt{1}^{st}$ step
- Primary and secondary halogenoalkanes

15.4 Nucleophilic Substitution Reaction

 $R - X + OH^{-} \rightarrow Alkene + X^{-} + H_2O$

Mechanism:

- Reagent: ethanolic NaOH or KOH
- Conditions: temp. 60°C, reflux
- OH⁻ acts as a proton acceptor; it accepts the H⁺ loss from the halogenoalkanes during elimination
- Elimination become progressively more easier Primary < Secondary < Tertiary
- Note: the carbon atom adjacent to carbon with halide must have at least one hydrogen attached to it.

15.7 Uses of Halogenoalkanes

- CFCs are inert and can be liquefied easily: Strength of C X bond is very high, hence do not decompose easily and are not flammable.
- Uses:
- \circ As propellants \rightarrow in aerosol cans
- \circ As solvents \rightarrow in dry-cleaning
- \circ As refrigerant \rightarrow for freezers and fridges
- $\circ\,$ Fire extinguishers, insecticides and pesticides

15.8 CFCs Effect on Ozone Layer

- Causes the destruction of the ozone layer
- CFCs escape in atmosphere and because of their inertness, remain without further reaction until they reach the stratosphere and ozone layer.
- In stratosphere, high energy U.V causes Cl atom to split of CFC molecule forming Cl· which reacts with ozone
- This is a catalytic cycle where one Cl· can react with many O₃ thus causing destruction of ozone layer:

 $Cl \cdot + O_{3(g)} \rightarrow \cdot OCl_{(g)} + O_{2(g)}$ $\cdot OCl_{(g)} + O_{(g)} \rightarrow Cl \cdot + O_{2(g)}$

Can react and breakdown another O₃ molecule

 Note: alternative is using HCFCs (replace Cl with H or more F atoms) as they break down more easily and do not release Cl → less effect on ozone layer

16. Hydroxy Compounds

16.1 Types of Alcohols

- Source of Alcohols:
- Hydration of alkenes
- Fermentation

16.2 Properties

Physical Properties:

- Colourless liquids at r.t.p
- b.p. and density increases with increasing C atoms and also with increasing OH groups

Boiling Point:

b.p. decreases ightarrow

	Primary		Secondary	Tertiary	
			because:		
branch	ning increases	>	VDWs decrease	b.p. decreases	

- b.p. of alcohols > alkenes as they have hydrogen bonds Solubility of Alcohols in Water:
- Smaller alcohols mix completely with water since strong hydrogen bonds occur between alcohols and water
- As hydrocarbon nature increase (i.e. more C-C... bonds), the non-polar character outweighs the ability of the OH to form hydrogen bonds and ∴ solubility decreases
- Small alcohols (e.g. ethanol) are good solvents for both polar and non-polar compounds as they have polar and non-polar components

16.3 Reaction with Sodium

- $R OH + Na_{(I)} \rightarrow RO^{-}Na^{+} + \frac{1}{2}H_{2(g)}$
- Type of reaction: acid-base
- Reagent used: liquid sodium metal
- Reactivity of alcohols decreases with increasing chain lengths of hydrocarbon
- Reaction less vigorous than that of Na and water which shows water is a stronger acid than alcohol

<u>16.4 Reaction with Carboxylic Acids</u> Carboxylic Acid Alcohol Ester

Reagent	Condition	Type of Reaction
	Heat-reflux	Estarification
R-COOH	Conc. H ₂ SO ₄	Esternication

ethyl ethanoate

Properties of Esters:

- Esters are volatile compounds no H-bonds so low m.p.
- Polar molecules soluble in organic solvents
- Sweet, fruity smelling liquids
- Many occur naturally e.g. as fats, oils & flavours in fruits
- Used in food flavourings and perfumes and as solvents

• Adjacent carbon to carbon with OH must have at least one hydrogen (tertiary cannot undergo dehydration)

16.7 Halogenation

• Type of Reaction: Nucleophilic Substitution

$R - OH \rightarrow R - X$				
Forming Reagent	Producing:		Reactions	Condition
		+ HO -	Conc. HCl \rightarrow RCl _(I) + H ₂ O	Zn + Heat/Reflux
	Alley Chloridos		$SOCI_2 \rightarrow RCI_{(1)} + SO_{2(g)} + HCI_{(g)}$	rto
	Alkyl Chlorides		$PCI_5 \rightarrow RCI_{(I)} + POCI_{3(aq)} + HCI_{(g)}$	r.t.p
			I I	$PCI_3 \rightarrow RCI_{(I)} + H_3PO_{3(aq)} + HCI_{(g)}$
$NaBr + H_2SO_{4(aq)} \rightarrow HBr$	Alley Promides	~	$HBr_{(g)} \rightarrow RBr_{(I)} + H_2O$	rtp
$P + Br_2 - warm \rightarrow PBr_3$	AIKYI BIOIIIIUES		$PBr_{3(g)} \rightarrow RBr_{(I)} + H_3PO_{3(aq)}$	r.t.p
$P + I_2 - warm \rightarrow PI_3$	Alkyl Iodide		$PI_{3(g)} \rightarrow RI_{(I)} + H_3PO_{3(aq)}$	r.t.p

16.8 Oxidation of Alcohols

Reagent: Oxidising agents					
Rea	Type of Reaction				
Acidified K ₂ Cr ₂ O ₄	Acidified KMnO ₄	Ovidation			
Orange to Green	Pink to Colourless	Uxidation			

- as soon as it forms
 Tertiary alcohols not oxidised be
- Tertiary alcohols not oxidised because no hydrogens attached to carbon with OH group so oxidising agent colour does not change

16.9 Tests for Alcohols

Reagent	Result with:						
	Primary	Secondary	Tertiary				
Na metal	E						
$K_2Cr_2O_4/H^+$	Green		\searrow				
KMnO₄/H⁺	Colo	ourless	\searrow				

17. CARBONYL COMPOUNDS

Boiling Point:

- Solubility: • Smaller carbony
- Smaller carbonyl compounds: completely soluble as they form hydrogen bonds with water molecules; are good solvents for polar & non-polar solutes
- Larger carbonyl compounds: polar nature decreases and non-polar nature increases; ability to form hydrogen bonds decreases

17.1 Nucleophilic Addition with HCN

Reagent	Condition	Type of Reaction
HCN	HCN w/alkali or HCN w/KCN	Nucleophilic Addition

- Since HCN added, carbon chain increases
- Product formed is hydroxynitrile or cyanohydrine
- Aldehydes are more susceptible to nucleophilic attacks than ketones
- Smaller carbonyl compounds more reactive
- \bullet Product has a chiral carbon \div exhibits optical isomerism

Mechanism:

- Note: HCN is a poor nucleophile and with few CN⁻ ions, the reaction is slow. To increase CN⁻ conc.:
- Make HCN react in presence of alkali

 $HCN + OH^{-} \rightarrow H_2O + CN^{-}$

 \bullet Addition of KCN and dilute H_2SO_4 can provide HCN and more CN $^{-}$ ions

17.2 Reduction of Carbonyl Compounds

- Type of Reaction: nucleophilic addition (H⁻ions)
- Reducing agents:
- NaBH₄ sodium tetrahydrioborate
- \circ LiAlH₄ lithium aluminium hydride
- \circ H₂/Pt or Ni

$Aldehydes \Longrightarrow \texttt{1}^{o} Alcohols$	Ketones \Rightarrow 2° Alcohols
$R-CHO + 2[H] \rightarrow RCH_2OH_$	R-CO-R + 2[H] → R -CH(OH)-R

17.3 Testing Carbonyl Compounds

2,4,- dinitrophenylhydrazine:

 $H_2O + C = NNH - NO_2$

- 2,4 dinitrophenylhydrazone
- It is a nucleophilic addition & condensation/elimination
- Forms: red/orange ppt.
- The m.p. of the ppt. can be used to identify individual aldehydes and ketones

Tests Given only by Aldehydes:

Teller's Descent			
Tollen's Reagent			
Solution of AgNO ₃ + aq. NH ₃ \rightarrow excess [Ag(NH ₃) ₂] ⁺			
Aldehyde + Tollen's Reagnet → Silver Mirror			
Ag ⁺ reduced to Silver and –CHO oxidised to acid			
$2Ag^{+} + RCHO \rightarrow 2Ag + RCOOH^{-} + H^{+}$			

Fehling's SolutionCuSO4 in ammonia solutionAldehyde + Fehling's Solution \rightarrow Red ppt.Cu²⁺ reduced to Cu(I) oxide and -CHO oxidised to acid $2Cu²⁺ + RCHO \rightarrow 2Cu⁺ + RCOOH⁻ + H⁺$

18. CARBOXYLIC ACIDS AND DERIVATIVES

- Weak acids; don't dissociate completely
- Forms hydrogen bonds:
- \circ High m.p./b.p.
- High solubility of smaller carboxylic acids
- Forms hydrogen bonded dimers when pure vapour, liquid or solid & when dissolved in non-polar organic solvents

18.1 Formation of Carboxylic Acids

- From alcohols: complete oxidation of primary alcohols
- From aldehydes: oxidation of aldehydes
- From nitriles: acid/base hydrolysis of a nitrile

React salt with HCl to get acid

18.2 Formation of Salts

- Heterolytic fission of the hydroxyl bond (-OH)
- Salts called carboxylates

19. Analytical Techniques

19.1 Infra-red Spectroscopy

- This is when a sample being analysed is irradiated with electromagnetic waves in the infra-red region of the electromagnetic spectrum.
- Machine used is spectrophotometer and it detects intensity of wavelengths of infra-red that pass through the sample
- The energy absorbed corresponds to changes in vibration of bonds leading to the bond being to stretch, bend and twist

- At a specific frequency, the **resonance frequency**, the largest vibrations are obtained
- Each type of vibration will absorb characteristic wavelengths of infra-red radiation
- We can hence identify the presence (or absence) of different functional groups from the absorbance pattern on an infra-red spectrum

19.2 Monitoring Air Pollution

- IR spectroscopy identifies particular bonds in a molecule, and so each pollutant will show a different pattern of absorptions – this allows the identification of the pollution
- It is also possible to measure the concentration of each pollutant with the different amounts of absorption

This document contain images and excerpts of text from educational resources available on the internet and printed books. If you are the owner of such media, text or visual, utilized in this document and do not accept its usage then we urge you to contact us and we would immediately replace said media.

No part of this document may be copied or re-uploaded to another website without the express, written permission of the copyright owner. Under no conditions may this document be distributed under the name of false author(s) or sold for financial gain; the document is solely meant for educational purposes and it is to remain a property available to all at no cost. It is currently freely available from the website www.znotes.org

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.