

Teaching guide: Trace Tables
This guide explains the concepts and ideas that are important to developing trace tables
for algorithms in GCSE Computer Science 8520.

Section one gives a broad overview of what trace tables are and provides a range of
examples for While Loops, For Loops and Nested For Loops.

Section two takes a Linear Search and provides a guide to completing a trace table for
an algorithm.

The third and final section provides guidance on developing student understanding of
trace tables, with ideas to introduce them in the early stages of programming.

What are Trace tables?
Trace tables are tables that consist of columns. Each column can represent a variable, a
condition, or an output. Not every variable, condition or output in an algorithm needs a
column in a trace table.

The purpose of the table is that we can run through an algorithm and simulate what a
computer would do if the program were to execute. We complete the table to show how
the variables change, what the conditions would resolve to, and/or what outputs would
be displayed.

There are two main reasons that trace tables are used. The first is to determine what
an algorithm does by running through it to see what happens as the algorithm runs.
The second is to test the logic of an algorithm if there are errors that are not easily
spotted.

The following examples show some basic algorithms and their trace tables.

Example 1

The algorithm below contains 1 variable (num), 1 condition (num < 500) and 1
output (OUTPUT num). The trace table shows how this algorithm would run if the user
entered an input of 4.

num ← USERINPUT

WHILE num < 500 THEN

 num ← num * 2

END WHILE

OUTPUT num

num num < 500 OUTPUT

4 TRUE

8 TRUE

16
TRUE

32
TRUE

64
TRUE

128
TRUE

256
TRUE

512 FALSE

 512

Example 2

Although the algorithm above only contains 1 variable, trace tables can keep track of
multiple variables by using additional columns. The algorithm below is an extension of
the algorithm above, and this time the program will also keep track of how many times
the while loop has repeated. In this example the user enters an input of 16.

num ← USERINPUT

count ← 0

WHILE num < 500 THEN

 num ← num * 2

 count ← count + 1

END WHILE

OUTPUT num

OUTPUT count

num count num < 500 OUTPUT

16 0 TRUE

32 1
TRUE

64 2
TRUE

128 3
TRUE

256 4
TRUE

512 5 FALSE

 512

 5

Example 3

Trace tables help you to determine how an algorithm will run and are especially useful
when you have nested structures that require you to keep track of multiple variables.
The algorithm below contains a simple for loop.

FOR i ← 1 TO 4

 OUTPUT i*2

ENDFOR

The trace table for this example is shown below. Although no variable is re-assigned inside
the for loop, there is an output which we can keep track of with a trace table.

i Output

1 2

2 4

3 6

4 8

The algorithm below has introduced a number of additional elements which have an impact
on how the algorithm runs. The best way to test this algorithm is to do a dry-run using a
trace table. The trace table, with a brief explanation is shown below.

num ← 0

total ← 0

FOR i ← 1 TO 3

 FOR j ← 1 TO 3

 num ← j * i

 total ← total + num

 ENDFOR

ENDFOR

OUTPUT total

The values for num and total are the first parts of this trace table that need to be
complete. They are both set to 0 before the first for loops starts.

We then have two for loops, an outer for loop that uses i to count from 1-3, and an
inner for loop that uses j to count from 1-3. When loops are nested, the inner for loop
repeats entirely, for every time the outer for loop repeats once. You can think of this like
the hours and minute hands on a clock. For every time the hour hand ticks once, the
minute hand has to complete an entire cycle.

There are two variables that are re-assigned every time the inner for loop repeats. The
trace table keeps track of how the values for i and j change so the line num ← j * i
is straight forward enough to keep track of. The trace table also keeps track of value
stores in total, so adding to this total each time is much easier for us to follow.

i j num total OUTPUT

 0 0

1 1 1 1

 2 2 3

 3 3 6

2 1 2 8

 2 4 12

 3 6 18

3 1 3 21

 2 6 27

 3 9 36

 36

Step by step Trace Table for a Linear Search

The following breaks down the process of completing a trace table for a linear search.
This document is not designed to offer a full and complete explanation of how a linear
search works, but focuses on the steps that are required to take a specific algorithm
and complete a trace table to prove the algorithm works correctly.

A linear search is an algorithm that is used to check if a specific item is present in a
data structure. The algorithm loops over the data structure, comparing each item one at
a time to the item that is being searched for. If the item is found the algorithm stops,
but if every item in the structure is checked and no match is found, then the program
will alert the user that the item is not in the structure. The pseudocode for this
algorithm is shown below and the line numbers have been included so they can be
referred to at different stages of the explanation in the following pages. It is advised
that you continue to refer back to this page to identify specific parts of the algorithm as
the trace table is gradually completed.

Note: There are different ways of implementing a linear search, and while this is an
accurate way of doing so, it is not the only way.

1 arrayToSearch ← [4, 8, 15, 16, 23, 42]

2

3 found ← False

4 itemToFind ← USERINPUT

5

6 FOR i ← 0 to LEN(arrayToSearch)

7 IF arrayToSearch[i] == itemToFind THEN

8 OUTPUT “Item found at index” + i

9 found ← True

10 BREAK

11 i ← i + 1

12 END FOR

13

14 IF found == False THEN

15 OUTPUT “The item is not in the list”

16 END IF

Step by step Trace Table with the input 16

The following pages will step through the completion of a trace table for this algorithm
when the input given will be 16. Rather than complete the entire trace table in one go,
this will guide you through each stage of completing the trace table and reference the
lines of code that are relevant as the trace table is being completed.

The structure that we are searching is called arrayToSearch, and is declared on line
1. In this implementation we will also start counting the data structure index at 0. A
visual guide for this structure is shown below.

arrayToSearch ← [4, 8, 15, 16, 23, 42]

Index [0] [1] [2] [3] [4] [5]

Value 4 8 15 16 23 42

Step 1

The first step of a trace table is to complete the values that are declared at the start of
the algorithm.

In this example the variables found and itemToFind are both given values at the start.
The value for found is written into line 3 of the program, whereas the value for
itemToFind is assigned a user input on line 4, and as already mentioned the input
given to the program will be 16.

found itemToFind i arrayToSearch[i]

False 16

Note: The array arrayToSearch is also declared at the start of the algorithm on line
1, but because there is no column heading for this identifier then it does not need to be
included in the trace table.

Step 2

We then continue to move through the algorithm. The next line of the program that
runs in line 6, where the FOR loop starts. Trace tables can become more complex to
keep track of when loops such as FOR, WHILE and REPEAT are used. They also become
a more useful tool when testing if an algorithm is working correctly and/or identifying
where the problems in the logic of an algorithm might be.

Hint: When you see a loop in an algorithm that you are tracing, it is always useful to
find where that loop ends, and then check which variables inside the loop you will have
to trace. In this example the loop starts on line 6 and finishes of line 12. Inside the loop
found, i, and arrayToSearch[i] could all be modified, so we know those are the
columns we need to keep an eye on.

In this example the FOR loop initialises i to 0 on line 6, therefore we can enter that into
the trace table. On line 7 the condition in the IF statement compares
arrayToSearch[i] to itemToFind. We have just completed the table to state what
the value of i is at this point, so we can now also determine that the value of
arrayToSearch[i]at this point is the first item in the list (due to 0 based indexing).

found itemToFind i arrayToSearch[i]

False 16

 0 4

Step 3

The algorithm then continues, and in this example i increments by 1 on line 11, before
looping back round to line 6. When i increment on line 11 we can now create a new row
on the trace table. The table now shows that i has started off with a value of 0 and then
is reassigned to 1. On line 7 the program uses arrayToSearch[i]again. As
mentioned above, the value of i was initially set to 0 and then incremented to 1, so now
instead of looking at the first item in the list (index 0), it now looks at the second item
(index 1) which has a value of 8.

The condition on line 7 is still false as the itemToFind is 16 and the
arrayToSearch[i] is 8. This means the code inside lines 8-10 still do not run.

found itemToFind i arrayToSearch[i]

False 16

 0 4

 1 8

Step 4

The next step in this example is very similar to Step 3. Line 11 increments the value of I
by 1 again, which means it now has a value of 2. The loop repeats back round to line 6
and then the condition on line 7 is checked again.

With the value of i now being 2, the arrayToSearch[i] is now the third item in the
list, which is a value of 15. Again, this condition is false so lines 8-10 are skipped.

found itemToFind i arrayToSearch[i]

False 16

 0 4

 1 8

 2 15

Step 5

With lines 8-10 being skipped, the program then moves onto line 11, where i increments
by 1 so it has a value of 3. Just like in step 2, step 3 and step 4, i is used to look at the
next item in the list, so this time around arrayToSearch[i] has a value of 16.

The condition on line 7 is now comparing arrayToSearch[i] and itemToFind both
of which have a value of 16. This condition is therefore TRUE and so for the first time in
this program lines 8-10 are run.

In the HINT for Step 2 it was mentioned that it is good practice to keep track of any
variables that have the potential to be re-assigned in a loop. This loop is now in its 4th
iteration, and for the first time lines 8-10 have been run. Line 8 is an output which is
not asked for in the trace table, but line 9 re-assigns the value for found, so we can
change the value of found in the trace table to TRUE.

Line 10 then runs for the first time in this program, and this breaks the FOR loops and
takes us down to line 12 for the rest of the program to be completed.

At this point we can see that none of the remaining lines of code will change any of the
variables or values required in our trace table, so this is now complete.

found itemToFind i arrayToSearch[i]

False 16

 0 4

 1 8

 2 15

True 3 16

Other Possible Correct Trace Tables

The trace table completed in step 5 contains 4 columns, and the key factor is that all 4
columns show the values changing in the correct way. The exact placement of the rows
and cells is not always fixed, and so there can be different layouts that are still correct,
and it may suit different people to complete trace tables with different styles. Some of
the other ways of completing the trace table are outlined below with explanations.

Additional Correct Example 1

In this additional correct example, each change in a value is given a completely separate
row in the table. This style shows a very clear run order, but in this example more than
double the number of rows are needed. With more complex algorithms, even more than
this could be required.

found itemToFind i arrayToSearch[i]

False

 16

 0

 4

 1

 8

 2

 15

 3

 16

True

Additional Correct Example 2

The original trace table completed in step 5 shows when the values for each column
change. In this additional correct example, every cell is complete, even if the value does
not change.

The advantage of this method is that making comparisons is clearer, but the
disadvantage is that if the algorithm hasn’t been understood properly and changes need
to be made, the trace table can begin to look very messy and difficult to read.

found itemToFind i arrayToSearch[i]

False 16

False 16 0 4

False 16 1 8

False 16 2 15

True 16 3 16

The key point to both of these additional correct examples is that the values in each
column change in the correct way.

• The column for found starts off as False as identified in line 3, and then is changed

to True at the end when line 9 will run.
• itemToFind starts off as 16 and does not change throughout the trace table.
• i starts as 0 and continues to count to 3 in increments of 1, but does not go beyond 3.
• arrayToSearch[i] starts off as 4 and then continues to show value for each

item one at a time until it gets to 16, but again, does not go any further.

Common Mistakes

There are some common mistakes that can occur when completing trace tables, even if
the person completing the table has fully understood the algorithm. Two of these
common mistakes are outlined below, and both provide examples based on an input of
16.

Auto-Completing rows and values without considering when the values should
stop changing

In this example the person completing the trace table has identified that the loop could
potentially count from 0-5, and that this will be used to cycle through each item in the
list. Rather than tracing the values one at a time, they have assumed the program will
continue and have completed the table without considering when the break may actually
occur.

In this example the trace table has gone from having all 4 columns correct, to ending up
with two columns (found and itemToFind) being correct.

found itemToFind i arrayToSearch[i]

False 16

 0 4

 1 8

 2 15

True 3 16

 4 23

 5 42

Completing columns up rather than down

Sometimes the person completing the trace tables feel like they should complete every
cell. As shown in the second additional correct example, this can be fine if the columns
are completed down. In this example the person has completed the table with gaps, and
then filled in any empty spaces by filling a cell with the value below the space.

found itemToFind i arrayToSearch[i]

False 16 0 4

True 16 0 4

True 16 1 8

True 16 2 15

True 16 3 16

Other Examples

As stated, the trace table stepped through shows how the trace table is completed for
the value of 16. There are 3 other complete examples of this algorithm shown below,
but with different inputs.

Try completing the trace table below for the following inputs, and then check them to
see if you are correct.

Example 1: User Input of 4

Example 2: User Input of 42

Example 3: User Input of 26

found itemToFind i arrayToSearch[i]

Example: User Input of 4

With a user input of 4, the algorithm will complete much more quickly. 4 is the first
item in the list, so a linear search will check that item first set found to True and
break out of the loop.

found itemToFind i arrayToSearch[i]

False 16

True 0 4

Example: User Input of 42

With a user input of 42, the algorithm will take the maximum number of comparisons
possible with the end value of found still being True.

found itemToFind i arrayToSearch[i]

False 16

 0 4

 1 8

 2 15

 3 16

 4 23

True 5 42

Example: User Input of 26

With a user input of 26, the algorithm will cycle through every item in the list, but
because it will be unable to find it, the end value of found will remain as false.

found itemToFind i arrayToSearch[i]

False 16

 0 4

 1 8

 2 15

 3 16

 4 23

False 5 42

Teaching Strategies to Introduce Trace Tables

One reason that trace tables often seem very challenging to students is that they are
not introduced at an early stage of programming. Students will go through the basic
skills required and won’t see trace tables until they are faced with more complex
algorithms. There are many ways the concepts to build the skills to complete trace
tables can be introduced earlier in a student’s programming development. This section
looks at some of these using the Micro:bit block language, and Python.

Note: While the following examples use the Micro:bit block language or Python, these
activities could be created in other block languages such as Scratch, or programming
languages such as Small Basic or VB. The key idea is finding ways to introduce the
concepts of variable tracing in whatever language students are first introduced to
programming with.

Block Languages

Example 1: The Answer is Always 3

The following statement will always end with the answer 3.

‘Think of a number, double it, add six, divide it in half, and subtract the number you
started with.’

This can be created using variables with the Micro:bit block language. Students can be
given the image blow and asked to complete trace tables showing how this challenge
can be worked out. The following is an example of this with the input of 12, and then
has 3 additional trace tables showing how the variables used in the program can
change.

Input: 12 Input: 4 Input: 0 Input: 3

A B A B A B A B

12 4 0 3

 24 8 0 6

 30 14 6 12

 15 7 3 6

 3 3 3 3

Other Micro:bit Trace Tables

While the programs below may not be useful in solving specific problems, they can be
an effective way of showing how trace tables can be completed at an early stage of a
student’s programming development. This method also has the added benefit of
allowing the student to complete the trace table based on the program, and then test
the program with either the online emulator or a Micro:bit to see if they have the
correct end value.

Example 1

A B

10

 12

27

54

 18

 972

947

Example 2

The following example has added additional programming concepts in the form of IF
statement as well as conditions that have their own column in the trace tables.

Trace table for the above algorithm with the inputs a = 6, b = 4 and c = 12

A B C A < B

6 4 12 False

2

 24

 26

Trace table for the above algorithm with the inputs a = 50, b = 60 and c = 70

A B C A < B

50 60 70 True

110

 -40

 -4,400

Example 3

This final example adds a further programming concept in the form of a repeat loop. An
index is used to count inside the loop and an OUPUT is added to the trace table.

Times Table Index Number OUTPUT

2

 1 2 2

 2 4 4

 3 6 6

 4 8 8

 5 10 10

 6 12 12

 7 14 14

 8 16 16

 9 18 18

 10 20 20

 11 22 22

 12 24 24

Displaying Trace Tables in Python

Once students start using a text based language they can modify programs to include
outputs of trace tables. In a similar way to the block based examples, this can be a
useful activity if they have to complete a trace table, write the program for the
algorithm they have just traced, then modify the program so they can see if their trace
table is correct.

The following code shows how you can use escape characters and string handling to
display a trace table. The first example shows the code and the output for the same
program used in the final Micro:bit example. The second example shows the code and
output when the modifications have been made to display the trace table as the
program runs.

Example of the Python code for the Micro:bit Example 3 shown above.

Example 1 Code

Example 1 Output

Example 2 Code

Example 2 Output

The main syntax used to create this is a TAB space that’s added to a string by using “\t”
inside a string. The column headings are displayed with the TAB space before the loop
starts. Inside, the loop all of the variables being traced are concatenated with the TAB
spaces to line up with the headings.

